			-
Contro	Numbor	Candidate Number	Name
Centre	number		Name

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CHEMISTRY

0620/02

Paper 2 (Core)

October/November 2005

1 hour 15 minutes

Candidates answer on the Question Paper. No Additional Materials required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen in the spaces provided on the Question Paper. You may use a pencil for any diagrams, graphs or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 16.

For Examiner's Use				

This document consists of 16 printed pages.

UNIVERSITY of CAMBRIDGE International Examinations 1 The diagram shows part of the Periodic Table.

	He			
С	Ν	0	F	Ne
		S	Cl	Ar
			Br	Kr

(a)	Ans	swer these questions using only the elements shown in the diagram.					
	Writ	rite down the symbol for an element which					
	(i)	has five electrons in its outer shell,		[1]			
	(ii)	has diatomic molecules,		[1]			
	(iii)	reacts with sodium to form sodium bromide,		[1]			
	(iv)	is a noble gas,		[1]			
	(v)	has a giant covalent structure,		[1]			
	(vi)	has a lower proton number than fluorine,		[1]			
(vii)	is the most abundant gas in the air.		[1]			
(b)	Writ	te down a use for each of the following eleme	nts.				
	(i)	argon					
				[1]			
	(ii)	helium					
				[1]			
((iii)	oxygen					
				[1]			

(ii)	Why is argon very unreactive?	[2]
		[1]

- (a) Write the chemical formula for sodium chloride.
 - [1]
- (b) Suggest how solid sodium chloride is obtained from the sodium chloride solution.

[1]

		5		For Examiner's
(c)	Soc Wh Ticł	lium chloride has an ionic giant structure. ich one of the following best describes an aqueous solution of sodium chloride? < one box.		Use
	a m	ixture of sodium ions and chlorine molecules in water		
	a m	ixture of sodium and chlorine atoms in water		
	a m	ixture of sodium and chloride ions in water		
	a m	ixture of sodium, chloride, oxide and hydrogen ions	[1]	
(d)	Des	scribe a test for chloride ions.		
	test			
	resi	ult	[2]	
(e)	The Pur	e rock surrounding the layers of salt is anhydrite. e anhydrite has the chemical formula CaSO₄.		
	(i)	State the name of the chemical found in anhydrite.		
			[1]	
	(ii)	Calculate the relative formula mass of the chemical in pure anhydrite.		
			[1]	
	(iii)	When anhydrite reacts with water, gypsum (CaSO ₄ .2H ₂ O) is formed. Complete the equation for this reaction.		
		$CaSO_4$ + CaSO_4.2H ₂ O	[1]	
	(iv)	Which one of the following describes this reaction? Put a ring around the correct answer.		
		combustion fermentation hydration oxidation reduction	[1]	

		6	For Examiner's	
	(v)	The chemical in anhydrite can be made by reacting calcium hydroxide with sulphuric acid. Complete the balanced equation for this reaction.	Use	
		$Ca(OH)_2$ + \rightarrow $CaSO_4$ + H_2O [2]		
	(vi)	The spring water running through the rocks changes anhydrite into gypsum. This reaction is exothermic. Use this information to explain why the temperature of the mine never falls below 17 °C even in cold winters.		
		[1]		
(f) The air inside the mine contains 19% oxygen. Which one of the following best describes the oxygen level inside the mine compare with that outside the mine? Tick one box.				
	the	level of oxygen inside the mine is higher		
	the	level of oxygen is the same		
	the	level of oxygen is about a quarter of that of the outside air		
	the	level of oxygen inside the mine is lower		
		[1]		

3 Hydrogen peroxide solution, H₂O₂, decomposes slowly in the absence of a catalyst. Oxygen and water are formed.

 $2H_2O_2(aq) \longrightarrow 2H_2O(l) + O_2(g)$

(a) Draw a diagram of the apparatus you could use to investigate the speed of this reaction.
You must label your diagram.

[3]

(b) Catalyst X was added to 50cm³ of hydrogen peroxide solution at 20°C and the amount of oxygen given off was recorded over a two minute period. The experiment was repeated with the same amounts of catalyst Y and catalyst Z. Apart from the type of catalyst, all conditions were kept the same in the three experiments. A graph of the results is shown below.

(ii) Which catalyst, X, Y or Z, produced oxygen gas the fastest? Explain your answer. [2] (iii) Why is the final amount of oxygen gas the same in each experiment?[1] (iv) Many transition metals and their oxides are good catalysts. State two other properties of transition metals which are not shown by other metals. [2] (c) The experiment with catalyst Z was repeated at 40°C. All other conditions were kept the same. The speed of the reaction increased. Explain why, using ideas about particles. [2] (d) Some enzymes also catalyse the decomposition of hydrogen peroxide. (i) State one difference between an enzyme and an inorganic catalyst such as a transition metal.[1] (ii) Enzymes are also responsible for fermentation reactions. Which one of the following equations A, B, C or D describes fermentation? **A** $C_6H_{12}O_6 + 6O_2 \longrightarrow 6CO_2 + 6H_2O_2$ $C_2H_4 + H_2O \longrightarrow C_2H_5OH$ В $C_6H_{12}O_6 \longrightarrow 6C + 6H_2O$ С $C_6H_{12}O_6$ ---- $2C_{2}H_{5}OH + 2CO_{2}$ D

[1]

The	e list	shows some oxides.	
		calcium oxide	
		magnesium oxide	
		nitrogen dioxide	
		SOCIUM OXICE	
		sulpriur dioxide	
(a)	Fro Giv	e a reason for your answer.	
			[2]
(b)	(i)	Which two oxides from this list contribute to acid rain?	
			101
			[2]
	(ii)	How do each of these oxides get into the atmosphere?	
	• •	ç i	
		name of oxide	
		source of oxide	[1]
			ניו
		name of oxide	
		source of oxide	[1]
(c)	Cal	cium oxide is manufactured from calcium carbonate.	
	(i)	Complete the word equation for this reaction.	
		aclaium combonata	[4]
			[1]
	(ji)	What condition is needed for this reaction to take place?	
	()		
			[1]

(d)	(i)	Explain why calcium oxide and sodium oxide cannot be reduced by heating v carbon.	with
			[1]
	(ii)	Copper(II) oxide can be reduced by heating with carbon. Complete the equation for this reaction.	
		CuO + C → 2Cu +	[2]
	(iii)	What do you understand by the term reduction?	
			[1]

For Examiner's Use

5 The structures of some organic compounds are shown below.

(d)	(i)	Which one of the compounds A to E is an unsaturated hydrocarbon?	
			[1]
	(ii)	Describe a chemical test for an unsaturated hydrocarbon.	
		test	
		result	[2]
(e)	Cor	npound E is acidic.	
	(i)	State the name of compound E.	
			[1]
	(ii)	Describe a test to show that compound E is acidic.	
		test	
		result	[2]

	electrode) (T	+	
	negative —— electrode molten —— aluminium				electrolyte compound in cryolite)	(aluminium dissolved
(2)	What compo	ound of alumir	nium is used for	the electrolyte?		
(a)	what compe					
						[1]
(b)	The electroly Explain why	yte must be m	nolten for the ele	ctrolysis to work.		[1]
	•••••					
(c)	(i) State th	e name of the	e substance use	d for the electrod	es.	
						[1]
	(ii) To whic Explain	h electrode d your answer.	o the aluminium	ions move durin	g electrolysis?	
						[2]
(d)	Complete th below.	e following se	entences about t	he molten electr	olyte using word	s from the list
	bau	ixite	chemical	cryolite	decreased	
	elec	ctrical	haematite	increased	light	
	The melting	point of the e	lectrolyte is			by adding
			This means th	at less		energy
	is needed to	melt the elec	trolyte.			[3]

------+

positive 、

(e) Aluminium is used in overhead power cables.

The table shows some properties of three metals which could be used for the power cables.

metal	relative electrical conductivity	density / grams per cm ³	price / £ per kg	relative strength
aluminium	0.4	2.70	18	9
copper	0.7	8.92	15	30
steel	0.1	7.86	2.7	50

(i) Suggest why aluminium is used for overhead power cables rather than copper.

					[1]
(ii)	Suggest why steel	is not used alone fo	or overhead power of	ables.	
					[1]
(iii)	Why is steel used a	as a core for overhe	ead power cables?		
					[1]
(iv)	Electrical insulators Which one of the for Put a ring around t	s are used in parts o ollowing is an electr he correct answer.	of the pylons which ical insulator?	carry the electrical cab	les.
	aluminium	ceramic	graphite	zinc	[1]

(f)	Alu	uminium has many uses.								
	(i)	Why is aluminium used for aircraft bodies?								
			[1]							
	(ii)	Describe a test for aluminium ions.								
		test								
		result								
			[3]							

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

	Elements
DATA SHEET	The Periodic Table of the

													_1	6														
	0	¹ He ⁴	2 2	20	Ne	Neon 10	40	Ar	Argon 18	84	Кr	Krypton 36	131	Xe	Xenon 54		Rn	Radon 86				175	Lu	Lutetium 71		Ļ	Lawrencium 103	
	II/			19	ш	Fluorine 9	35.5	C1	Chlorine 17	80	Ŗ	Bromine 35	127	Ι	lodine 53		At	Astatine 85				173	γb	Ytterbium 70		No	Nobelium 102	
	N			16	0	Oxygen 8	32	S	Sulphur 16	79	Se	Selenium 34	128	Те	Tellurium 52		Ро	Polonium 84				169	Тл	Thulium 69		Md	Mendelevium 101	
	>			14	z	Nitrogen 7	31	٩	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83				167	ш	Erbium 68		Em	Fermium 100	
	2			12	ပ	Carbon 6	28	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82				165	Ч	Holmium 67		Es	Einsteinium 99	
	≡				11	8	Boron 5	27	٩l	Aluminium 13	70	Ga	Gallium 31	115	In	Indium 49	204	Τl	Thallium 81				162	Dy	Dysprosium 66		Ç	Californium 98
										65	Zn	Zinc 30	112	Cd	Cadmium 48	201	Hg	Mercury 80				159	Tb	Terbium 65		Bk	Berkelium 97	
										64	Cu	Copper 29	108	Ag	Silver 47	197	Au	Gold 79				157	Qq	Gadolinium 64		Cm	Curium 96	
dno										59	ïZ	Nickel 28	106	Pd	Palladium 46	195	Ŧ	Platinum 78				152	Eu	Europium 63		Am	Americium 95	
Gro										59	ပိ	Cobalt 27	103	Rh	Rhodium 45	192	Ir	Iridium 77				150	Sm	Samarium 62		Pu	Plutonium 94	
		- T	nyurogen 1							56	Fe	Iron 26	101	Ru	Ruthenium 44	190	os	Osmium 76					Рш	Promethium 61		aN	Neptunium 93	
										55	Mn	Manganese 25		ц	Technetium 43	186	Re	Rhenium 75				144	PN	Neodymium 60	238	n D	Uranium 92	
										52	ບັ	Chromium 24	96	Mo	Molybdenum 42	184	8	Tungsten 74				141	Ρ	Praseodymium 59		Ра	Protactinium 91	
										51	>	Vanadium 23	93	ЧN	Niobium 41	181	Та	Tantalum 73				140	မီ	Cerium 58	737	Th	Thorium 90	
										48	Ħ	Titanium 22	91	Zr	Zirconium 40	178	Ħ	Hafnium 72							nic mass	loc	iic) number	
			ſ				1			45	လိ	Scandium 21	68	≻	Yttrium 39	139	La	Lanthanum 57 *	227	Ac	Actinium 89	l ceries		elles	= relative aton	= atomic sym	= proton (atom	
	=			6	Be	Beryllium 4	24	Mg	Magnesium 12	40	Ca	Calcium 20	88	Sr	Strontium 38	137	Ba	Barium 56	226	Ra	Radium 88	anthanoir		Actifiold &	a a	×	q	
	_			7	:	Lithium 3	23	Na	Sodium 11	39	×	Potassium 19	85	Rb	Rubidium 37	133	cs	Caesium 55		ŗ	Francium 87	*58-711		20-10°		Kev	<u>а</u>	

The volume of one mole of any gas is $24 \, dm^3$ at room temperature and pressure (r.t.p.).